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ABSTRACT

Concatenated codes have long been used as a
practical means of achieving long block or con-
straint lengths for combating errors on very noisy
channels. The inner and outer encoders are nor-
mally separated by an interleaver, so that decoded
error bursts coming from the inner decoder are
randomized before entering the outer decoder. In
this paper we examine the effectiveness of this
interleaver by calculating the cut-off rate of the
"outer channel” seen by the outer decoder with and
without interleaving. The results show that
interleaving can never hurt the performance of a
concatenated code, and that when the inner code
rate is near the cut-off rate of the "inner chan-
nel”, interleaving can significantly improve code
performance.

I. INTRODUCTION

Forney [1] first introduced concatenated
codes as a practical means of implementing codes
with long block or constraint leangths. Further
use has shown these codes to be extremely powerful
as means of combating errors on very noisy chan-
nels. In this paper, we examine the performance
of concatenated coding systems as measured by
their effective channel cut-off rate.

Concatenated coding systems are usually im—
plemented by employing two levels of coding, as
illustrated in Figure 1 below.
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Figure 1. Concatenated Coding System

lThis work was supported in part by NASA Grant
NCAZ 1R562-401

20n leave from the Illinois Institute of
Technology, Chicago, IL 60616. This work was
supported in part by NASA Grant NAG 5-234

On leave from the Electronic Technology Institute
of Southwest China, People's Republic of China

Binary data from the information source is
serially partitioned into K-bit blocks that are
subsequently used as input signals to a 2K-ary
block encoder known as the outer encoder. Usually
Q=2K-ary Reed-Solomon (RS) codes are used for this
purpose. The output of the RS encoder {Q-ary sym-
bols) is converted back into bits and serially en-
coded by a second encoder (the inner encoder),
which may be either block or convolutional, and
the resultant sequence of channel symbols is sent
over the physical channel. Decoding is accom-
plished in the reverse order.

For purposes of illustration, we consider the
inner channel to be a Binary Symmetric Channel
(BSC) derived from forcing hard decisions on an
additive white gaussian noise (AWGN) channel,
This channel is representative of the deep space
channel where concatenated codes have met with a
great deal of success. The outer channel (the
channel presented to the RS code) is no longer
memoryless, but has been transformed into a non-
uniform (time-varying) channel by the inner de-
coder. To calculate the performance of the over-
all concatenated coding scheme requires investi-
gating the channel produced by the inner encoder-
BSC-inner decoder combination which Forney [1) has
called the “superchannel".

II. CHANNEL MODELS

McEliece and Stark [2] have suggested some
models for channels with "block interference". In
a block interference channel, the noise statistics
are assumed to be constant for the time required
to send K bits of data, but vary independently
from one block of K bits to the next. In parti-
cular, McEliece and Stark have evaluated the chan-
nel capacity and cut-off rate for a two state
block interference channel. When the channel is
in the quiet state, no errors are made in trans-
mission. The noisy state is represented by a BSC
with a crossover probability of s. (A totally
noisy channel has s=1/2). However, even when the
channel is in the noisy state, it is possible to
receive the K bits of data correctly with prob-
ability (1-8)K. 1In this model, the probability of
being in a particular state, p(s), depends on the
physical channel (fading, burst noise, frequency
hopping, etc) and is fixed and independent of the
block length K.

To evaluate the performance of a concatenated
code, we propose a modified form of the above
model that provides a better match to this coding
application. We assume that a rate R=K/N block
code is used on the inner channel and that a de-
coding error occurs with probability Pgg(K). That
is, the channel is in the noisy state with this
probability. When the channel is in the noisy
state, each information bit is decoded incorrectly
with probability s, Various methods can be used
to estimate the decoded information bit error rate




n

from the block error probability (see, for exam-
ple, Clark and Cain {3]). For non-systematic
codes, s=1/2 gives a good estimate for the decoded
information bit error rate, given that a block
error has occurred. For systematic codes, an im-
proved estimate 1is s=d/N, where d is the minimum
distance of the code. The channel is in the quiet
state (s=0) with probability 1-Pgg(K), and no de-
coding errors are made. With probability Pgg(R)
the channel 1is in the noisy state and decoding
errors are always made. The important difference
between this model and that used by McEliece and
Stark is that in this model the probability of be-
ing in the noisy state is dependent on the length
of the "interference" blocks (information word
length).

When convolutional codes are used on the
inner channel, a more complex model of the super—
channel is needed to compute performance measures.
The reason is that error events in convolutional
coding have different lengths. Forney [4] has de-
rived some random coding results on the lengths of
these error events. To 1illustrate this point,
consider the error environment generated with an
(N,1,K) (1 N output length K shift register convo-
lutional codel  Using hard decisions on the AWGN
channel, Viterbi [5] shows that the decoded event
error probability at any time during maximum like-
lihood decoding 1s bounded by

P(E) < T(X)| (1
lx = 2/ PII‘P’,

where T(X) is one form of the code generating
function, and p 1is the crossover probability
forced by using hard decisions. The decoded in-
formation bit error probability is bounded by —

IT(X,Y)
Pp(E) < ¢

(2)
Y
X = ZVpZI-pS, Y=1.

For small wvalues of p (high signal-to-noise
ratios), the most likely error event (when the
all-zero sequence is sent) is that the minimum
weight path is decoded instead of the all~zero
path, If the information sequence corresponding
to the minimum weight path has weight b and length
L, then the typical event error causes b bit
errors and has length L. Therefore, we can use
the above block code model with '"block length"alL,
and s=b/L. For larger values of p (lower signal-
to-noise ratios), longer event errors become more
likely and cannot be ignored. In this case a more
general channel model for the outer channel is re-
quired to evaluate the cut~off rate.

III. THE CUT-OFF RATE

The objective is to find the maximum achiev-
able coding rate for the concatenated coding sys-
tem. Define the cut-off rate of the imner channel
as Rpj and that of the outer channel as Rgy.  Now
if a rate R code is used on the inner channel, the
maximum overall code rate is given by

Rpax = R * Roo. 3)

If the crossover probability of the inner BSC is
p, then the cut-off rate, Rgj, is given by [6]:

Roi = l~loga{1+2/p(i-p)]. (4)

For inner code rates R<Rpj, the random coding
bound on the block error probability is given by

-N(Rgi-R) ~K{(Rpi/R)-1]
Ppe(K) < 2 =2 ,  (3)

where N, X, and R are the block 1length, informa-
tion block length and code rate of the inner code,
respectively. For non-systematic codes, the de-
coded information bit error rate for the block
code is equal to 1/2, given that a block decoding
error has occurrred. Therefore, the unconditional
bit error probability of the decoded output is
-1-K{Rpj/R)-11}
Pp = (1/2)-Ppg(K) < 2 . ()

We now proceed to evaluate the cut-off rate
of the outer code. Two possibilities are coa-
sidered. If full interleaving is used, then the
outer channel can be treated as a memoryless chan-
nel and the cut-off rate can be calculated in the
usual way. If interleaving is not used, then the
channel is treated as a 2K-ary memoryless channel
and the cut-off rate is evaluated by methods to be
presented in the next section,

A. Interleaving

If we interleave the bits entering the super-
channel, the channel seen by the outer coding sys-
tem becomes a memoryless BSC with a bit error
probability given by ean., (6) above. Note that we
are still wusing coding, so that the block error
probabilities given are unchanged. Under this
assumption, we calculate the cut-off rate for the
outer channel by

Roo = l-logz[l+2beZI-Pb5]

K[ (Rpi/R)~1] —K{(Rp;/R)~1]
> 1-loga|14/2 - (2-2 )

N

Some sample calculations of Rg, are presented in
Table 1 below.

R/Rq; \ K 4 8 16 2 64 128 256 512
a1 1.000 1.060 1.000 1,000 1,000 1.0608 1.000 1.000
g9.2 .9921 1.000 1.600 1.600 1,006 1.660 1,000 1.000
0.3 29219 ,9968 1.000 L.000 l.c06 1.000 1,000 1.000
g.4 L7660 ,9685 .9995 1.000 1,000 1.00¢ Ll.000 1.000
0.5 .5692 .8779 .9921 1.600 1.000 1.000 1.000 1.000
2.6 .3783  .7115  .9583  .9987 1.006 1.000 1,006 1.000
g.7 .2186 ,4932 .8223 .9825 .9998 1,000 1.06¢ 1.000
2.8 .1000 .2676 .5692 .8779 .9%21 1.080 1.000 1,000
2.9 .0260 .0832 ,2295 ,5109 .8364 .9853 ,9999 1,060

Table 1. Rp, with Interleaving

The outer channel cut-off rate is calculated as a
function of the ratio of the inner code rate to
the inner channel cut-off rate, and the informa-
tion word length K. The probability of being in
the noisy state (block decoding error) is obtained
from the random coding bound (5) for the parti-
cular values of K and R/Rpj in the table. Table 2
gives the maximum attainable coding rate of the
overall system, normalized by the inner channel
cut-off rate, Roi .



R/Rgi \K 4 8 16 32 64 128 25  SI2
0.1 .10g¢ .l000 .l109¢ .1063 .1000 .100@ .loed .1000
8.2 .198¢ .2000 .2000 .2000 .2000 .2000 .2089 .2000
0.3 .2766  .2991 .3060 .3000 .3000 .3000 .3800 .3000
0.4 L3064 .3874  .3998 4000 .4000 .4000 .4900 4000
a.5 .2846 4390 .4960 .5000 .5000 .S000 .S000  .5000
0.6 .2278  .4269 5702 .5992 6006 .6060 .600¢ .60
0.7 1530 3453 .5756 .6878 .6999 7000 .7000 .7000
6.8 .0800  .2141 .4554 .7023 .7936 .800¢ .3000  .8009
0.9 L0234 L6749 2066 .4598 .7528 .BBEB .8999  .9600
Table 2. Rpax/Roi with Interieaving

The maximum values for each value of K are under—
lined. For a given value of K, note that the max-
imum value of Rpax/Rpj does not occur at the low-
est value of R (which presents the best channel to
the outer coder). Instead, there is a local maxi-
mum for each K that drifts toward the higher rates
as K increases. This is reasonable since the code
performance should improve for increasing block
lengths as long as the coding rate R is below Rpj.
In addition, Ryay increases as R increases, given

that K 1is sufficiently large. For the shorter
block 1lengths (e.g., K=4 or K=8) a lower rate
inner code 1is required to "clean wup" the inner

channel, and as a consequence the overall coding
rate suffers.

The limiting values are of interest. From
Table 1, we see that Rgy approaches 1 as K
increases, and from Table 2 we note that Ryay/Roi
tends toward R/Rpj with increasing K. When K is
small, lower inner code rates R yield a higher
overall coding rate.

B. Inner Channel as a ZK-ary Memoryless Channel

If no interleaving is used, it 1is difficult
to justify using a random coding bound of the Rg
type since the channel 1is not memoryless., How—
ever, if we think of the Kth extension of the
channel as producing a memd?;less channel whose
input and output symbols correspond to blocks of
length K, then we can calculate the channel cut-
off rate for this memoryless 2K-ary channel. Fol~
lowing Massey [6] we have

Rpo = max (-1og,4[2[)_'¢211|5_$o(5_)]21} (8)
olx) 1z
where x and are the channel input and output K-

tuples, respectively, f(zli) is the channel tran-
sition probability, O(x) is the channel input dis-

tribution, and M=2K, TThe calculation in eq. (8)
begins by first calculating
£(y|x) = Xp(a)f(l[}_,s) (9)
s

That is, f(y|x) is calculated for an average chan-
nel. (This assumes that the receiver has no "side
information" about the state of the channel, as
defined by McEliece and Stark [2]).

As an example, consider a two state channel
(s=0 <=> "quiet", and 8#0 <=> '"noisy"). Let
Pr(s#0) = Pgp(K)=e, and Pr(s=0) = 1-Pgg(K) = l-¢.
Given that no block error occurs (s=0),

f(y|x,s=0) =1 , = x
L 1-= (10)
=0,y*x

If there is a block decoding error, then we assume
that the event {y=x} never occurs. In this case,
the entries for each element in the channel tran-
sition matrix for which y#x must be normalized by
the probability that y#*x. Let a = 1-(1-s)K be the

probability that y#x or a block of K bits. Then
i(1-g)K-1
£(y|x,8%0) = s11-s)77% Ly tx
a
an
=0 39 St 3

where 1 = dn(z,z) = Hamming distance between X and
X

The average channel
obtained as follows:

transition probability is

f(y|x) = ¢ £(y|x,s#0) + (1-€)f(y|x,s=0)

= (1-€) s X=X (12)

s L*X.

If eq. (12) is put into matrix form, it is easy to
see that the channel is symmetric, and therefore
Q(x)=1/M maximizes Rg, in eq. (8). Substituting
in eq. (8) we obtain

K 2
Roo = - =Jlogz I =| ==+ 1 (1) /= si(x-.)K-i]
K Z.Mz i=1*17 ¥ a

(13)
Since the term inside of the square brackets is
independent of y, the summation over y reduces to
a multiplication by M, and

2 X oxy [ .
Roo = 1- — logo|/T-e+] () z si(1-g)k-1 (14)
K i=1 "7 la

-N(Roi-R)
With e=Pgg(K) < 2 , and choosing s=1/2 to
represent the decoding of a non-systematic code,
we have

2 [ =R[(Roi/R)-1] 2-(R/2)[(Roi/R)-2]
Roo21~ — loga{\1-2 +

K V1-2-K
(15)

Some sample calculations of Rg, are shown in Table
3. The corresponding values for Rpgy/Roi are
found in Table 4. As in the case of interleaving,
Roo approaches 1 for R/Rgj < 1/2, and in all cases
increases with increasing block length for fixed

« S si(1-e)k-i
2 2

rate. With K fixed, Rg, decreases with increasing
R/Roj .

R/Rg; \ K 4 8 16 32 64 128 256  SI2
0.1 1.000 1.000 1.000 1.000 1.006 1.000 1.000 1.000
0.2 .9892  1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.3 .8981 .9912 .9999 1.000 1.008 1.000 1.900 1,000
9.4 7199 ,9197  .9891 .9996 1.000 1.000 1.000  1.090
6.5 .5233  .7507 .8750 .9375 .9687 .9844 9922  .9961
a.6 .3522  .S479  .6403 L6645 .6666 .6667 .6667  .6657
.7 .2143 3648 .4212 .4284 4286  .4286 .4286  .42%6
0.3 1076 .2136 .2473  .2506 2500 .2500 .2500 .2500
9.9 L8394 L0916 .1106 1111 L1111 L111F LIl LI

Table 3. Rggy without Interleaving



R/Rg; \K 4 8 16 2 64 128 256 512

g.1 .1600 .1000 .1000 .looe .1060 .1000 .1606 .1006
9.2 L1978 2000 .20800 2000 ,2000 .2000 .2000 +2000
8.3 .2694 2974 .3000 .3000 .3000 . 360 »3000 .30600
0.4 22876 .3679 3956 «3999 .4000 .40006 .4000 4006
0.5 .26l6 T4 4375 4687 .48M L4922 4961 4380
@.6 .2113 L3287  ,23842  ,3987 .4000 .4080 4000 .4000
2.7 .1568 .2554 .2948 +2999 3000 .3600 »3000 .3680
6.8 .0861 1799 .1978 2000 ,2000 .2008 .2000 .2000
6.9 .0273 .9824 .09%¢  .1000 .1000 .l000 .1000 .1080

Table 4. Rgpax/Roi without Interleaving

From Table 4 we see that the normalized value of
Rpax 2180 increases with K for a fixed value of
R/Rpj. However, for a fixed K, the value of
Rpax/Roi does not monotonically decrease with
R/Rgi, but increases to a maximum value at
R/Rgj=1/2, and then decreases as the inner code
rate increases. For a fixed K, there is some
optimum value of R/Rgj that maximizes the total
overall coding rate achievable.

It is of interest to note the asymptotic be-
havior of Rgp as K becomes large. If we take the
limit as K*® of Ry in eq. (15), we see that

2 ~-(K/2) [(Roi/R)-2]
Roo * 1- E'1°82 1+2 (16)

From Eq. (16) above, it is easy to see that

Roo * 1 when R<-;R£2,l
and . .

R%*%-l when El-Z—‘-<R<Roi. an
Therefore, .

Rpax * R when R < Egi

and ROi
Rpax * Rgi - R when > < R < Roi. (18)

Figure 2 shows the normalized values of Rpgx When
interleaving is used. Figure 3 shows the normal-
ized Rpgy when interleaving is not used.
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Figure 2. Rpgx/Roi Wwith Interleaving
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Figure 3. Rmax/ L

without Interleaving

IV. DISCUSSION OF RESULTS

From Figures 2 and 3 we see that there is
some optimum inner code rate R which maximizes the
overall coding rate achievable. When interleaving
is used, this optimum inner code rate increases
with increasing K, approaching the cut-off rate
Rpij of the inner channel as K becomes large. On
the other hand, when interleaving is not used, the
optimum inner code rate is always { 1/2 Rgj. In
both cases, the maximum overall coding rate
achievable increases with increasing K, approach-
ing a maximum of Rpj with interleaving and 1/2 Roi
without interleaving.

It is instructive to compare the interleaved
and non-interleaved cases on the same graph.
Figure &4 shows both the interleaved case (dotted
curves) and the non-interleaved case (solid
curves) for three different values of K: K=8,
K=32, and K*», We see that the maximum achievable
coding rate Rpgyx is larger with interleaving than
without interleaving for any finite K and all
inner code rates R. The difference is parti-
cularly significant when R > 1/2 Rgj. For large
K(K+=), the two curves are merged when R%¥1/2 Rgi,
but when R > 1/2 Roj, Rpax * Roi for the inter-
leaved curve whereas Rpay * O for the non-—
interleaved curve. These results clearly indicate
that interleaving should be used between the inner
and outer codes in order to maximize the overall
achievable coding rate.
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The situation may not be as clear if we con-
sider the channel capacity of the outer channel
instead of the cut-off rate. McEliece and Stark
[2] have shown that in the case of a block inter-
ference channel with a fixed probability (inde-
pendent of K) of being in the noisy state, inter—
leaving causes the channel capacity to decrease
while the cut-off rate increases. An analysis of
some specific codes led them to the conclusion
that capacity was a better measure of
code performance in that case, and hence that
using a code designed to correct burst errors
gives better performance than a  random—
error-correcting code with interleaving. We are
currently investigating chaunnel capacity for the
concatenated code case, and hope to report the re-
sults of this research in the near future.

Some other areas under current investigation
include extending the above results to the case of
convolutional inner codes and the use of side
information obtained from the inner decoder by the
outer decoder. As pointed out in Section II, the
model must be modified to include more than 2
states when the inner code is convolutional, since
the error events are of different lengths, In the
case of side information, the inner decoder can
deliver a reliability indicator along with each
decoded block to the outer decoder. We are cur—
rently investigating the effects these alterations
in the model will have on the calculations of cut-
off rate and capacity, and on the performance of a
concatenated coding system both with and without
interleaving.
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